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Osteoporosis is a multifactorial skeletal disease, characterized 
by reduction in bone mass and disruption of the microarchitectur-
al structure of bone tissue, resulting in loss of mechanical strength 
and increased risk of fracture.2 The disorder can be localized or 
involve the entire skeleton. Generalized osteoporosis can be pri-
mary (postmenopausal and senile) or secondary. In the European 
Union, osteoporosis is a leading cause of mortality and morbidity 
in the elderly and a key factor in the high cost of medical care.34

Although osteoporosis usually makes its appearance late in life, 
and age is a major risk factor, its roots can be tracked back into 
adolescence. Particularly during periods of rapid bone growth, 
dietary calcium levels are of high importance.34 Other factors that 
contribute to the pathogenesis of osteoporosis are lifestyle and 
genetic and hormonal attributes.13,71 Reduced physical activity 
increases the rate of bone loss, and muscle contraction is the pre-
vailing source of skeletal loading. Regarding hormonal factors, 
women, especially in the decade after menopause, can show a 
severe reduction of bone mass, thus explaining the high incidence 
of osteoporotic fractures in women compared with men.34

The multiple factors implicated in osteoporosis, its obscure 
pathogenesis, the dramatic decline in quality of life, high inci-
dence of the disorder (especially in postmenopausal women), 
financial cost, and high mortality, make the need for further ex-
perimentation in animal models imperative. Experimental re-
search can improve our understanding of pathogenesis and of 
the activity of pharmaceutical agents in the prevention or treat-

ment of the disease. Although many aspects of the disorder have 
been revealed, others remain unclear, including the mechanisms 
involved in calcium homeostasis in the extracellular space and its 
effect on bone physiology and disease65 and the cell and molecu-
lar pathways triggered after mechanical loading to orchestrate 
bone renewal.53 Current research is focused on new therapeutic 
possibilities targeting the osteolytic enzymes of the osteoclast 
and the mechanisms activating bone progenitor cells and those 
controlling apoptosis as new potential treatments.63,64

Many therapeutic advances in the management of osteoporo-
sis were studied first in diverse animal models and then entered 
clinical practice.31,67,69 All of these models should fulfill similar ba-
sic criteria: they must comply with national and local ethical and 
legislative considerations, be accessible to experimental centers, 
be easy and safe to handle, have a low cost of acquisition, require 
little maintenance, reliably reproduce the disease and the biologi-
cal material to be examined should be readily available. Labora-
tory rats meet most of these criteria. In addition, the availability 
of detailed knowledge of the rat skeleton and protocols for rapid 
induction of osteopenia, have increased this model’s popularity. 
Here we review the advantages and limitations of the use of the 
laboratory rat in osteoporosis research.

Strengths and limitations of rat models of  
osteoporosis

Bone modeling and remodeling. In the selection of the most 
adequate animal model for the study of a disease, the reliable 
reproduction of the disorder is of paramount importance. One 
of the first questions to be addressed in osteoporosis research is 
whether the prevailing activity in the rat skeleton is modeling 
or remodeling. In the adult human skeleton, bone formation is 

The Laboratory Rat as an Animal Model for 
Osteoporosis Research

Pavlos P Lelovas,1 Theodoros T Xanthos,2 Sofia E Thoma,1 George P Lyritis,1 and Ismene A Dontas1,2,*

Osteoporosis is an important systemic disorder, affecting mainly Caucasian women, with a diverse and multifactorial etiology. 
A large variety of animal species, including rodents, rabbits, dogs, and primates, have been used as animal models in osteoporosis 
research. Among these, the laboratory rat is the preferred animal for most researchers. Its skeleton has been studied extensively, and 
although there are several limitations to its similarity to the human condition, these can be overcome through detailed knowledge 
of its specific traits or with certain techniques. The rat has been used in many experimental protocols leading to bone loss, including 
hormonal interventions (ovariectomy, orchidectomy, hypophysectomy, parathyroidectomy), immobilization, and dietary manipula-
tions. The aim of the current review is not only to present the ovariectomized rat and its advantages as an appropriate model for the 
research of osteoporosis, but also to provide information about the most relevant age and bone site selection according to the goals 
of each experimental protocol. In addition, several methods of bone mass evaluation are assessed, such as biochemical markers, 
densitometry, histomorphometry, and bone mechanical testing, that are used for monitoring and evaluation of this animal model 
in preventive or therapeutic strategies for osteoporosis.

Abbreviations: BMD, bone mineral density; DEXA, dual-energy X-ray absorptiometry; μCT, microcomputerized tomography; pQCT, 
peripheral quantitative computerized tomography

Date submitted: 8 March 2008. Revisions requested: 18 April 2008. Accepted: 3 June 
2008.
1Laboratory for Research of the Musculoskeletal System and 2Laboratory of Experimental 
Surgery and Surgical Research, School of Medicine, University of Athens, Greece

*Corresponding author. Email: idontas@med.uoa.gr



The rat model of osteoporosis

425

cause of cortical porosity, but rats lack a well-developed Hav-
ersian remodeling system. In the rat skeleton, cortical bone gain 
occurs in the periosteum, and cortical bone is lost at the endoste-
um.67 Larger animal models such as rabbits,6 dogs, and primates31 
are considered more appropriate for the study of Haversian re-
modeling. However, the species-specific traits of osteoporosis 
in dogs (inappropriate model for postmenopausal osteoporo-
sis, high cost of maintenance, ethical dilemmas) and primates 
(high cost of acquisition and maintenance, reduced availability 
in experimental centers, ethical dilemmas) limit their use in os-
teoporosis research. In all animal models, the bulk of bone loss 
is focused on the endosteal surface. However, ovariectomy of 
skeletally mature rats leads to a condition similar to menopause, 
in that the surgery leads to cancellous and endocortical bone loss 
by increasing the overall rate of bone remodeling and by altering 
the balance between bone formation and bone resorption, such 
that resorption predominates at selected skeletal sites.31 Losses of 
endocortical as well as cancellous bone are the primary causes of 
postmenopausal osteoporosis, whereas intracortical remodeling-
induced bone loss in the Haversian system plays a minor role.29 
Given the difficulties with other animal models of osteoporosis, 
the lack of the Haversian remodeling in the rat skeleton is a short-
coming that often can be accommodated.69

Rat osteopenia due to age, ovariectomy (in the female rat), and 
immobilization bears a strong resemblance to human osteopenia, 
both in its anatomical features as well as in the transitional and 
steady states of the bone dynamics. The main attributes of human 
osteoporosis are spontaneous and low-impact fractures, neither 
of which has ever been reproduced in any animal model.18 Nev-
ertheless, taking into account the definition of the World Health 
Organization, which states that the osteoporosis is present when 
bone mineral density (BMD) is more than 2.5 standard devia-
tions below the young adult reference mean, with or without the 
presence of any fracture,33 the nonfractured osteopenic rat can be 
considered an appropriate model for osteoporosis research.

Rat models of osteoporosis
Several experimental interventions are used to induce osteope-

nia and osteoporosis in the rat (Figure 1). The rate of loss of bone 
mass in male and female rats is highly dependent on the method 
used to induce osteoporosis and the site evaluated and whether 
this loss concerns cancellous or cortical bone.31

All experimental osteoporosis protocols can be implemented in 
skeletally immature or mature rats.60 Although rats reach sexual 
maturity at the age of 2.5 mo, their skeleton is considered mature 
after the age of 10 mo.31 If skeletally immature rats are involved, 
then a low peak bone mass is achieved, a fact that is considered to 
be a high risk factor for human osteoporotic fractures. This trait is 
why the skeletally immature rat is an appropriate animal model 
in the research of endocrine, nutritional and environmental fac-
tors, all of which can influence peak bone mass. The skeletally 

coupled to bone resorption, temporally and locally, following the 
sequence of activation–resorption–formation. This process, which 
is called remodeling, has characteristic morphologic features that 
can be recognized histomorphometrically.10,15,17,55

In contrast to remodeling, modeling is the formation and re-
sorption of bone in a specific site; these 2 processes occur over 
long periods of time and independently of each other. In model-
ing, the cycles of activity are activation–formation and activation–
resorption. If the site is cancellous bone, the term minimodeling 
is used. The morphologic features of modeling differ from those 
seen in remodeling, and these features can be differentiated 
histomorphometrically.10,17,55

In the past, many scientists held that in the rat skeleton, the 
prevailing activity is modeling and consequently the rat was not 
an appropriate model for osteoporosis. The rat skeleton, however, 
shows a gradual transition from modeling to remodeling that is 
related to age progression in both cancellous and cortical bone.13 
In the cancellous bone of the lumbar vertebrae, this transition 
is evident from the age of 3 mo, whereas in the proximal tibial 
metaphysis this transition takes place from 6 until 9 mo of age.29 
In addition, in the endocortical bone of the lumbar vertebrae and 
the proximal tibial metaphysis, this gradual transition happens 
from the age of 3 to 6 mo and 9 to 12 mo, respectively (Table 1)31  
The prevailing activity in cancellous and cortical bone in the 
lumbar vertebral body and proximal tibial metaphysis in the rat 
skeleton, after the age of 12 mo, is remodeling.14,31 The modeling-
to-remodeling transition is associated with reduction of longitu-
dinal bone growth to very low rates. To conduct research on new 
potential modalities for osteoporosis in rats, the bone site and age 
of the animal must be such that remodeling is the predominant 
activity.

Bone site-specific characteristics. Another parameter to take 
into account is that, in rats, some bones retain their ability for lon-
gitudinal growth throughout most of their life. In male rats, the 
epiphyses of many long bones remain open past 30 mo. In female 
rats, bone growth in the proximal tibial and distal tibial epiphysis 
stops at the age of 15 and 3 mo respectively, whereas the same 
process for the lumbar vertebrae lasts 21 mo.31 After the age of 10 
mo, the bone growth rate for the proximal tibial epiphysis is less 
than 3 μm/day and stops after the age of 15 mo. 14,31 If experimen-
tation starts around 10 mo of age, which marks the peak bone 
mass age for the rat, the longitudinal bone growth adjacent to the 
epiphyseal plate of the tibia will be less than 1 mm. Densitometric, 
tomographic, or histomorphometric measurements should not be 
made adjacent to the epiphyseal growth plate of the proximal 
tibia, where the prevailing activity is modeling. Measurements 
should be conducted 1 mm distal to the growth plate where the 
prevailing activity is remodeling. In this way, measurements of 
normal bone growth are avoided (Table 2).

In the lumbar vertebrae, a distance of 0.5 mm from the epiphy-
seal growth plate is sufficient to avoid the primary spongiosa.14 
For the distal tibia, where the growth plates close at the age of 
3 mo, the measurement can involve the whole spongiosa and 
should start immediately below the subchondral bone.31 The con-
tinuous growth of specific sites of the rat skeleton prompts the 
mandatory use of a control group to differentiate the gain or loss 
of bone mass attributed to age.

Limitations. A potential drawback to the use of rat models for 
osteoporosis is the lack of Haversian remodeling in the rat skel-
eton. In humans, increased Haversian remodeling is the main 

Table 1. Transition times from modeling to remodeling in the rat 
skeleton14,31

Cancellous Endocortical

Proximal tibial meta-
physis

6 to 9 mo 9 to 12 mo

Lumbar vertebra 3 mo 3 to 6 mo



Vol 58, No 5
Comparative Medicine
October 2008

426426

evidence showing that the rat is capable of accurately replicat-
ing the glucocorticoid-induced bone loss noted in adult humans 
is unavailable.31,57,60 Other hormonal interventions resulting in 
osteopenia, including hypophysectomy,30 orchidectomy,28 and 
parathyroidectomy,4 also are well studied in the rat skeleton.

Immobilization osteoporosis. Another method for inducing os-
teoporosis in rats is through immobilization. There are several 
methods of immobilization, which can be either surgical, such 
as nerve,77 tendon66 and spinal cord resection,54 or conservative, 
such as casting,62 suspension,51 and limb bandaging.3 Because of 
the regional acceleratory phenomenon, the rate of bone loss is 
more rapid after surgical methods than immobilization.16 In the 
immobilization model, the bulk of bone loss occurs in the hind 
limbs, because they are the sites of greatest mechanical loading, 
but in general, the rate of bone loss is faster in cancellous than 
in cortical bone. This difference can partly be attributed to the 
surface to volume ratio, which is increased in cancellous bone.31 
The earliest statistically significant bone loss in the proximal and 
distal tibial metaphysis for this model is seen at 14 to 30 d after 
initiation of immobilization, whereas the time needed to achieve 
steady state for the these sites is 126 and 45 d respectively.41 One 
of the advantages of this method is that bone changes also occur 
in the distal tibial metaphysis of rats, the architecture of which is 
similar to that in human adults. Furthermore, because of its low 
bone turnover rate, this site is suitable for the research of anabolic 
agents in the prevention and treatment of osteoporosis.27

In the immobilization model, in contrast to the ovariectomized 
model, periosteal bone formation ceases in cortical bone, but en-
dosteal resorption, leading to slow bone loss, continues. Changes 
in the tibial diaphysis in regard to marrow cavity enlargement 
and reduction of cortical bone width first become statistically 
significant approximately 42 days after immobilization, where-
as in the femoral diaphysis, bone cavity enlargement is appar-
ent by day 21. Cortical bone loss can reach 10% at 26 wk after 
immobilization.3,40

Combining ovariectomy and immobilization pairs the advan-
tages of both methods and can markedly reduce the time when 
bone mass loss becomes apparent, especially for cortical bone.9,54

Other experimental methods inducing osteoporosis in rats. The 
rat has been used to understand the pathogenesis and severity of 
bone mass loss after alcohol abuse.57,68 Osteopenia has also been 
studied after administration of low-calcium diet to immature 
rats.59 The effects of the calcium:phosphorus ratio in food as well 
as dietary magnesium supplementation also have been investi-
gated in the rat model of ovariectomy-induced osteoporosis.35,39

mature rat is an appropriate animal model for the research of 
postmenopausal and immobilization osteoporosis.69

Postmenopausal osteoporosis. The ovariectomized rat model 
is most commonly used in research on postmenopausal osteo-
porosis. After ovariectomy, bone resorption exceeds bone forma-
tion initially, causing bone loss. Soon thereafter, bone remodeling 
reaches a steady state, where resorption and formation are bal-
anced. Statistically significant bone loss is seen in the proximal 
tibial metaphysis after 14 d,72,74 in the lumbar vertebral body after 
60 d,73 and in the femoral neck after 30 d.43 In addition, the time 
needed for the proximal tibial metaphysis to reach steady state is 
90 d,72,74 compared with 270 d for the lumbar vertebral body and 
femoral neck.43,73 In contrast, ovariectomy does not induce bone 
mass loss in the epiphyses of long bones, the distal tibial meta-
physis, or caudal vertebrae.40,42,45,50

In cortical bone, enlargement of the marrow cavity is an indi-
rect measure of bone loss. This enlargement in the diaphysis of 
long bones is due to increased endosteal bone resorption70 and 
periosteal bone apposition.49 Endosteal resorption and the simul-
taneous periosteal bone formation result in a very slow rate of 
cortical bone loss.38 Analysis of the inner half area of the shaft in 
cortical bones is a very sensitive index, because the bulk of bone 
loss occurs at this site. The earliest changes in the cortical bone 
width and the marrow cavity of the femoral and tibial shaft are 
noticed between 90 and 120 d after ovariectomy,11,37,75 whereas 
cortical bone requires to 180 d or longer after surgery to achieve 
steady state.31 Researchers must bear in mind that age-related 
decreases in cortical BMD in intact female rats start in the lumbar 
vertebrae at the age of 15 mo and in the proximal tibial metaphy-
sis at the age of 12 mo.19

Alternative methods to surgical ovariectomy leading to osteo-
porosis are the administration of pharmaceutical agents, such 
as a gonadotropin releasing hormone agonist,25 estrogen recep-
tor antagonist,20 and aromatase inhibitor, that is reversible af-
ter their withdrawal.23 These pharmaceutical agents, which are 
used in humans for the endocrine treatment of endometriosis 
or breast cancer, are associated with accelerated bone loss.69 The 
administration of gonadotropin releasing hormone agonists 
creates a hypogonadotrophic–hypogonadal model, whereas es-
trogen receptor antagonists and aromatase inhibitors produce 
a hypergonadotrophic–hypogonadal model of osteoporosis. Ex-
perimentation on the rat as a model of glucocorticoid-induced 
osteoporosis has yielded inconsistent results. Some studies were 
unable to detect bone loss in mature rats,60 but other reports cor-
relate glucocorticoid administration with bone loss.52 Compelling 

Table 2. Distance from the epiphyseal growth plate to avoid the primary spongiosa, time of epiphyseal closure, and the earliest stastistically signifi-
cant bone loss after ovariectomy or immobilization in the skeletally mature female rat.

Distance from the epiphyseal 
growth plate Epiphyseal closure (mo)

Earliest detection of  
significant bone loss  
after ovariectomy (d)

Earliest detection of 
significant bone loss after 

immobilization (d)

Femoral neck — — 30 —
Femoral diaphysis — — — 21
Proximal tibial metaphysis 1 mm 15 14 14–30
Distal tibial metaphysis Immediately below the sub-

chondral bone
3 none 14–30

Tibial diaphysis — — — 42
Lumbar vertebra 0.5 mm 21 60 —

—, not applicable
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Noninvasive methods. Biochemical markers. Measurements of 
calcium, phosphorus, and magnesium in blood and urine can 
be obtained from animal models. Biochemical markers of bone 
turnover include peptides originating from osteoblasts or osteo-
clasts and organic compounds released during the synthesis and 
resorption of bone matrix.44 Markers may be measured by using 
a variety of methods, including liquid chromatography, radioim-
munoassay, immunoradiometric assay, luminescence immuno-
assay and enzyme-linked immunosorbent assay.44,58 Markers of 
bone formation (for example alkaline phosphatase, osteocalcin) 
need to be distinguished from those of bone resorption (for ex-
ample pyridinoline, tartrate-resistant acid phosphatase, urinary 
type I collagen crosslinked N-telopeptides); all markers of bone 
turnover represent bone metabolism changes in the whole skel-
eton.58 Proteins and peptides vary in structure between species. If 
these markers are measured by immunoassay, the antibody must 
recognize the specific protein or peptide structure of the species 
being analyzed.44

The availability of specialized biochemical markers in animal 
models is limited, compared with those used in humans. Al-
though human reagents for detecting biochemical markers can 
be modified for use in animal models, loss of specificity and sensi-
tivity result. Other disadvantages further limit the value of using 
biochemical markers in animals.69 Specifically, these compounds 
do not provide information regarding bone mass and strength, 
they reflect changes in the whole skeleton, and they fail to iden-

From preclinical studies to clinical practice
Several therapeutic options have been investigated in the ova-

riectomized rat model, some of which have already been trans-
lated into clinical practice. Estrogen administration prevented 
osteopenia and decreased bone turnover in the ovariectomized 
rat model, a finding consistent with the skeletal effects of estrogen 
therapy in postmenopausal women.72 Selective estrogen receptor 
modulators such as raloxifene had beneficial effects on bone min-
eral density, without significant adverse uterine effects.5 Calcitonin 
administration promoted osteoblastic activity, thus augmenting 
bone mineral density.36 Treatment with bisphosphonates, such as 
zoledronic acid, increased bone structure and mechanical strength 
of bones of ovariectomized adult rats.26 Parathyroid hormone has 
been found in promoting bone strength in this animal model.61 
Finally, the administration of strontium ranelate improved bone 
strength by improving bone mass and microarchitecture.47

Methods of evaluating osteopenia in rats
The methods used in the evaluation of bone mass, architecture, 

and metabolism in the rat skeleton are, generally speaking, the 
same as those used for humans. The need for further investiga-
tion in this field has led to the introduction of methods for rats 
that are more specialized and perhaps more invasive than those 
used for humans.

Figure 1. Algorhythm for the selection of experimental interventions to induce osteopenia or osteoporosis in the laboratory rat.
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applied in vitro and in vivo and is very promising for evaluation 
of trabecular architecture.24

Invasive methods. Histomorphometry. Histomorphometry pro-
vides a 2-dimensional study of bone mass and architecture at a 
very high resolution compared with those of the aforementioned 
imagining techniques. Histomorphometry accurately evaluates 
bone architecture and indices of bone fragility independently of 
bone mass.10 Parameters measured by histomorphometry include 
the numbers of osteoblasts, osteoclasts, osteocytes, and active 
osteoblasts relative to bone perimeter; trabecular thickness, num-
ber, and separation; and so on.48 The use of fluorochrome labeling 
is especially valuable in the evaluation of bone changes. Histo-
morphometry, however, is not free of limitations. The histologic 
assessment of an area does not represent changes in the whole 
skeleton. Furthermore, by definition, only a very small sampling 
area can be assessed and then normalized to a tissue sampling 
area. This method provides credibility when the sampling area is 
comparable in all groups.9,56 Although many histomorphometric 
parameters are expressed in volume, users must bear in mind that 
the data have been evaluated in 2-dimensional sections. Never-
theless, histomorphometric data provide a documented assess-
ment of a bone’s stereologic organization.10 The combination of 
BMD and histomorphometric modalities can explain 90% of vari-
ability in bone strength.12

Mechanical strength evaluation. The realization that increases 
in bone mass do not always reflect fracture reduction in humans 
and the infeasibility of observing low-impact fractures in ani-
mal models have made ex vivo mechanical testing imperative.31 
Three-point bending, 4-point bending, and torsion testing are 
used frequently to assess bone mechanical strength.70 However, 
these tests can only be done in diaphyses of long bones, in sites 
where osteoporotic fractures are rare. New tests have been devel-
oped to assess the vertebral (compression testing) and femoral 
head (cantilever testing) mechanical strength, sites where osteo-
porotic fractures are common in humans.61,76

Conclusions
The high incidence, long-term implications, high mortality, fi-

nancial burden and dramatically decreased quality of life indicate 
the severity of osteoporosis in humans. The need to better under-
stand the multifactorial nature of this disorder and to develop 
new preventive and therapeutic methods makes the use of animal 
models of osteopenia necessary. The similarities in pathophysi-
ologic responses between the human and rat skeleton, combined 
with the husbandry and financial advantages, have made the rat 
a valuable model in osteoporosis research. However, researchers’ 
selection of a model should be based on scientific criteria and not 
ease of use, and investigators should always bear in mind that 
experimentation should adhere to the 3Rs of ethical animal use: 
replacement, reduction, and refinement.
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